
Real-Time, Cloud-based Object Detection for
Unmanned Aerial Vehicles

Jangwon Lee, Jingya Wang, David Crandall, Selma Šabanović, and Geoffrey Fox
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Abstract—Real-time object detection is crucial for many ap-
plications of Unmanned Aerial Vehicles (UAVs) such as recon-
naissance and surveillance, search-and-rescue, and infrastructure
inspection. In the last few years, Convolutional Neural Networks
(CNNs) have emerged as a powerful class of models for recog-
nizing image content, and are widely considered in the computer
vision community to be the de facto standard approach for
most problems. However, object detection based on CNNs is
extremely computationally demanding, typically requiring high-
end Graphics Processing Units (GPUs) that require too much
power and weight, especially for a lightweight and low-cost drone.
In this paper, we propose moving the computation to an off-board
computing cloud, while keeping low-level object detection and
short-term navigation onboard. We apply Faster Regions with
CNNs (R-CNNs), a state-of-the-art algorithm, to detect not one
or two but hundreds of object types in near real-time.

I. INTRODUCTION

Recent years have brought increasing interest in autonomous

UAVs and their applications, including reconnaissance and

surveillance, search-and-rescue, and infrastructure inspection

[1]–[5]. Visual object detection is an important component

of such UAV applications, and is critical to develop fully

autonomous systems. However, the task of object detection

is very challenging, and is made even more difficult by the

imaging conditions aboard low-cost consumer UAVs: images

are often noisy and blurred due to UAV motion, onboard

cameras often have relatively low resolution, and targets are

usually quite small. The task is even more difficult because

of the need for near real-time performance in many UAV

applications.

Many UAV studies have tried to detect and track certain

types of objects such as vehicles [6], [7], people including

moving pedestrians [8], [9], and landmarks for autonomous

navigation and landing [10], [11] in real-time. However, there

are only a few that consider detecting multiple objects [12], de-

spite the fact that detecting multiple target objects is obviously

important for many applications of UAVs. In our view, this gap

between application needs and technical capabilities are due

to three practical but critical limitations: (1) object recognition

algorithms often need to be hand-tuned to particular object and

context types; (2) it is difficult to build and store a variety of

target object models, especially when the objects are diverse in

appearance, and (3) real-time object detection demands high

computing power even to detect a single object, much less
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Fig. 1. A drone is able to detect hundreds of object categories in near real-
time with our hybrid approach. Convolutional Neural Network-based object
detection runs on a remote cloud, while a local machine plays a role in
objectness estimation, short-term navigation and stability control.

when many target objects are involved.

However, object recognition performance is rapidly improv-

ing, thanks to breakthrough techniques in computer vision that

work well on a wide variety of objects. Most of these tech-

niques are based on “deep learning” with Convolutional Neural

Networks, and have delivered striking performance increases

on a range of recognition problems [13]–[15]. The key idea is

to learn the object models from raw pixel data, instead of using

hand-tuned features as in tradition recognition approaches.

Training these deep models typically requires large training

datasets, but this problem has also been overcome by new

large-scale labeled datasets like ImageNet [16]. Unfortunately,

these new techniques also require unprecedented amounts of

computation; the number of parameters in an object model

is typically in the millions or billions, requiring gigabytes of

memory, and training and recognition using the object models

requires high-end Graphics Processing Units (GPUs). Using

these new techniques on low-cost, light-weight drones is thus

infeasible because of the size, weight, and power requirements

of these devices.

In this paper, we propose moving the computationally-

demanding object recognition to a remote compute cloud,

instead of trying to implement it on the drone itself, let-

ting us take advantage of these breakthroughs in computer
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vision technology without paying the weight and power costs.

Commercial compute clouds like Amazon Web Services also

have the advantage of allowing on-demand access to nearly

unlimited compute resources. This is especially useful for

drone applications where most of the processing for navigation

and control can be handled onboard, but short bursts of intense

computation are required when an unknown object is detected

or during active object search and tracking. Using the cloud

system, we are able to apply Faster R-CNNs [17], a state-

of-the-art recognition algorithm, to detect not one or two but

hundreds of object types in near real-time. Of course, moving

recognition to the cloud introduces unpredictable lag from

communication latencies. Thus, we retain some visual pro-

cessing locally, including a triage step that quickly identifies

region(s) of an image that are likely to correspond with objects

of interest, as well as low-level feature matching needed for

real-time navigation and stability. Fig. 1 shows the image

processing dataflow of this hybrid approach that allows a low-

cost drone to detect hundreds of objects in near real-time. We

report on experiments measuring accuracy, recognition time,

and latencies using the low-cost Parrot AR Drone 2.0 as a

hardware platform, in the scenario of the drone searching for

target objects in an indoor environment.

II. RELATED WORK

A. Deep Learning Approaches in Robotics

We apply object detection based on Convolutional Neural

Networks (CNNs) [13], [18] for detecting a variety of objects

in images captured from a drone. These networks are a type

of deep learning approach that are much like traditional multi-

layer, feed-forward perceptron networks, with two key struc-

tural differences: (1) they have a special structure that takes

advantage of the unique properties of image data, including

local receptive fields, since image data within local spatial

regions is likely to be related, and (2) weights are shared across

receptive fields, since the absolute position within an image is

typically not important to an object’s identity. Moreover, these

networks are typically much deeper than traditional networks,

often with a dozen or more layers [18]. CNNs have been

demonstrated as a powerful class of models in the computer

vision field, beating state-of-the-art results on many tasks such

as object detection, image segmentation and object recognition

[13]–[15].

Recent work in robotics has applied these deep learning

techniques to object manipulation [19], hand gesture recogni-

tion for Human-Robot Interaction [20], and detecting robotic

grasps [21]. These studies show the potential promise of apply-

ing deep learning to robotics. However, it is often difficult to

apply recent computer vision technologies directly to robotics

because most work with recognition in the computer vision

community does not consider hardware limitation or power

requirements as an important factors (since most applications

are focused on batch-mode processing of large image and

video collections like social media). In our work we explore

using cloud computing to bring near real-time performance

Fig. 2. We use the Parrot AR.Drone2.0 as our hardware platform (top),
adding a mirror to the front-facing camera in order to detect objects on the
ground (bottom).

to robotics applications, without having to compromise on

accuracy or the number of object classes that can be detected.

B. Cloud Robotics

Since James Kuffner introduced the term “Cloud Robotics”

in 2010, numerous studies have explored the benefits of

this approach [22], [23]. Cloud computing allows on-demand

access to nearly unlimited computational resources, which

is especially useful for bursty computational workloads that

periodically require huge amounts of computation. Although

the idea of taking advantage of remote computers in robotics

is not new, the unparalleled scale and accessibility of modern

clouds has opened up many otherwise unrealistic applications

for mobile robot systems. For example, automated self-driving

cars can access large-scale image and map data through the

cloud without having to store or process this data locally [22].

Cloud-based infrastructures can also allow robots to commu-

nicate and collaborate with one another, as in the RoboEarth

project [24].

However, a key challenge in using remote cloud resources,

and especially commodity cloud facilities like Amazon Web

Services, is that they introduce a number of variables that are

beyond the control of the robot system. Communicating with a

remote cloud typically introduces unpredictable network delay,

and the cloud computation time itself may depend on which

compute resources are available and how many other jobs

are running on the system at any given moment in time.

This means that although the cloud may deliver near real-

time performance in the average case, latencies may be quite

high at times, such that onboard processing is still needed

for critical tasks like stability control. Here we move target

recognition to the cloud, while keeping low-level detection,
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short-term navigation and stability control local. This hybrid

approach allows a low-cost quadcopter to recognize hundreds

of objects in near real-time on average, with limited negative

consequences when the real-time target cannot be met.

C. Objectness Estimation

While modern object recognition may be too resource-

intensive to run on a lightweight drone, it is also unrealistic to

transfer all imagery to a remote cloud due to bandwidth limita-

tions. Instead, we propose locally running a single, lightweight

“triage” object detector identifies images and image regions

that are likely to contain some object of interest, which then

can be identified by a more computationally-intensive, cloud-

based algorithm. To do this, we evaluate ‘objectness’ [25],

which is measure of how likely a certain window of an image

contains an object of any class. Most recent object detectors

in the computer vision field use one of the objectness esti-

mation techniques (or object proposal methods) for reducing

computation instead of using brute-force sliding windows that

run detectors at every possible image location [13], [26].

Several object proposal methods have been recently pro-

posed, each with strengths and weaknesses [27]. We apply

the Binarized Normed Gradients (BING) algorithm to measure

objectness on input frames as a first step process in our hybrid

object detection system [28]. While it is not the most accurate

technique available [27], it is one of the simplest and fastest

proposal methods (1 ms / image on a CPU), and thus can run

in real-time on local machine.

III. HARDWARE PLATFORM

We use a Parrot AR.Drone 2.0 as a low-cost hardware

platform [29] to test our cloud-based recognition approach.

The AR.Drone costs about US$300, is small and lightweight

(about 50cm × 50cm and 420g including the battery), and can

be operated both indoors and outdoors.

A. Hardware Specifications

The AR.Drone 2.0 is equipped with two cameras, an Inertial

Measurement Unit (IMU) including a 3-axis gyroscope, 3-axis

accelerometer, and 3-axis magnetometer, and pressure- and

ultrasound-based altitude sensors. The front-facing camera has

a resolution of 1280 × 720 at 30fps with a diagonal field of

view of 92◦, and the lower-resolution downward-facing camera

has a resolution of 320 × 240 at 60fps with a diagonal field

of view of 64◦. We use both cameras, although we can only

capture images from one of the two cameras at the same time

due to firmware limitations.

Because the front-facing camera has a higher resolution and

wider field of view than the downward-facing one, we use the

front-facing camera for object detection. To allow the drone

to see objects on the ground, which is needed for most UAV

applications like search and rescue, we mounted a mirror at a

45◦ angle to the front camera (see Fig. 2).

Cloud Server

Send detected 
images by BING

Location of target object

Cloud Computing

Object Detection with R-CNNs

Local Machine

Position Estimation

Objectness Estimation with BING

PID Control

Wireless / LAN

Object?

Yes

Input Video
(320 x 240 @ 60 fps)

Objectness Estimation
with BING

Take a 
high resolution image

(1280 x 720 with position)

Object Detection
with R-CNNs

Fig. 3. System Overview: Our approach consists of four main components:
BING based objectness estimation, a position estimation for localization, PID
control for navigation, and R-CNNs based object detection. All components
are implemented under the ROS framework, so each component can com-
municate with every other via the ROS network protocol (top). Given input
video, the local machine detects generic objects in every frame with BING,
then takes a high resolution image and sends it to the cloud server if the
frame contains generic objects. The cloud server then runs R-CNNs based
object detection to find a target object (bottom).

B. Embedded Software

The AR.Drone 2.0 comes equipped with a 1 GHz ARM

Cortex-A8 as the CPU and an embedded version of Linux

as its operating system. The embedded software on the board

measures horizontal velocity of the drone using its downward-

facing camera and estimates the state of the drone such as roll,

pitch, yaw and altitude using available sensor information. The

horizontal velocity is measured based on two complementary

computer vision features, one based on optical flow and the

other based on tracking image features (like corners), with the

quality of the speed estimates highly dependent on the texture

in the input video streams [29]. All sensor measurements are

updated at 200Hz. The AR.Drone 2.0 can communicate with

other devices like smartphones or laptops over a standard WiFi

network.

IV. APPROACH

A. System Overview

Our approach consists of four main components shown at

top in Fig. 3. Each component is implemented as a node in the

Robot Operating System (ROS), allowing it to communicate

with others using the ROS transport protocol [30]. Three

components, the objectness estimator, the position estimator

and PID controller, are run on a laptop (with an Intel Core i7

Processor running at 2.4 GHz), connected to the drone through

the AR.Drone device driver package of ROS, over a WiFi link.

The drone is controlled by the control commands with four

parameters, the roll Φ, the pitch Θ, the vertical speed z, and

the yaw Ψ. The most computationally demanding component,

the R-CNN-based object detection node, runs on a remote

cloud computing server that the laptop connects to via the

open Internet.

The bottom of Fig. 3 shows the pipeline of image processing

in our hybrid approach. The drone takes off and starts to
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search for target objects with the downward-facing camera.

Given input video taken from this downward-facing camera,

the objectness estimator node runs the BING algorithm to

detect generic objects on every frame, and then takes a high

resolution image with the front-facing camera if it detects

candidate objects in the frame [28]. Consequently, only the

“interesting” images that have a high likelihood to contain

objects are sent to the cloud server, where the R-CNN-based

object detection node is run to recognize the target objects in

the environment.

B. Position Estimation and PID Controller for Navigation

We employ an Extended Kalman Filter (EKF) to estimate

the current position of the drone from all available sensing

data. We use a visual marker detection library, ArtoolkitPlus,

in our update step in order to get accurate and robust abso-

lution position estimation results within the test environment

[31]. (It would be more realistic if the drone estimated its

current position without these artificial markers, but position

estimation is not the focus of this paper so we made this

simplification here.)

Furthermore, since our test environment is free of obstruc-

tions, we assume that the drone can move without changing

altitude while it is exploring the environment to look for target

objects. This is a strong assumption but again is reasonable for

the purposes of this paper, and it makes the position estimation

problem much easier because this assumption reduces the state

space from 3D to 2D. Note that this assumption does not mean

that the drone never changes its altitude — in fact, it can and

does change altitude to get a closer view of objects, when

needed, but it does so in hovering mode and returns back to the

canonical altitude before flying elsewhere in the environment.

In order to generate the control commands that drive the

drone towards its desired goal locations, we employ a standard

PID controller. Thus, the PID controller generates the control

commands to drive the drone according the computed error

values, and finally, the drone changes operation mode to

hovering mode when the drone reaches within a small distance

of the desired goal position.

C. Objectness Estimation with BING

The quadrocopter starts its object detection mission with

the downward-facing camera, which takes video at 60fps with

320 × 240 image resolution. Given this video input, the local

objectness estimation node decides whether the current input

frame contains a potential object of interest. We apply the

Binarized Normed Gradients (BING) algorithm to measure

this objectness on every input frame [28].

We trained the BING parameters on the Pascal VOC 2012

dataset [16], and used the average score of the top 10 bounding

boxes for making a decision. In order to set a decision

threshold for our approach, we collected background images

having no object using our quadrocopter. Using the threshold,

the object estimator node measures the objectness of each

frame, then takes a high resolution image with the front-

facing camera if the score is above the threshold. Finally, the

Fig. 4. An example of R-CNNs-based object detection with an image taken
by our drone.

node sends the images to the cloud server with its position

information.

D. Cloud-based R-CNNs for Object Detection

After receiving an image of a candidate object, we apply the

Faster R-CNN algorithm for object detection [17]. R-CNNs are

a leading approach for object detection that combines a fast

object proposal mechanism with CNN-based classifiers [13],

and Faster R-CNN is a follow-up approach by the same authors

that increases accuracy while reducing the running time of

the algorithm. Very briefly, the technique runs a lightweight,

unsupervised hierarchical segmentation algorithm on an im-

age, breaking the image into many (hundreds or thousands

of) overlapping windows that seem to contain “interesting”

image content that may correspond to an object, and then each

of these windows is classified separately using a CNN. R-

CNNs have shown leading performance in datasets for object

detection challenges, but these images are usually collected

from social media (e.g. Flickr), and to our knowledge, have not

been applied to robotic applications. The main reason for this

is probably that CNNs demand very high computational power,

typically in the form of high-end GPUs, even though their

recent approach only requires around 200 ms for processing

per image with GPUs. We therefore move the R-CNNs based

object detection part to a cloud system.

Besides the computational cost, another major challenge

with using CNNs is their need for very large-scale training

datasets, typically in the hundreds of thousands or millions

of images. Because it is unrealistic for us to capture this

scale dataset for our application, we used R-CNN models

trained for the 200 object types of the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC13) dataset [16]. A

disadvantage of this approach is that the training images were

mostly collected from sources like Google Images and Flickr,

and thus are largely consumer images and not the aerial-type

images seen by our drone. We could likely achieve much better

recognition accuracies by training on a more representative

dataset; one option for future work is to take a hybrid approach

that uses the ILSVRC13 data to bootstrap a classifier fine-

tuned for our aerial images. Nevertheless, our approach has

39



TABLE I
OBJECT DETECTION RESULTS ON OUR AERIAL IMAGES COLLECTED BY THE DRONE.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
Fast YOLO 87.5 84.6 0.0 50.0 65.5 100.0 87.9 80.0 92.3 47.1 60.0 75.0 88.9 100.0 76.6 100.0 54.5 100.0 66.7 84.6 78.3
YOLO 60.9 88.2 80.0 80.0 92.3 100.0 87.2 100.0 70.4 50.0 40.0 81.0 77.8 93.4 88.7 100.0 45.2 100.0 81.8 79.2 79.4
SSD300 60.0 94.1 20.0 100.0 90.0 100.0 100.0 100.0 75.0 47.8 50.0 66.7 81.3 92.9 92.9 100.0 66.7 100.0 85.7 82.6 81.6
SSD500 66.7 88.2 50.0 88.9 100.0 92.9 93.2 100.0 72.1 65 85.7 69.6 88.9 93.8 81.7 100.0 66.7 89.5 66.7 100.0 82.6
Faster R-CNN 70.6 93.8 83.3 85.7 91.9 92.9 89.7 100.0 87.2 62.5 - 77.3 100.0 93.8 81.7 66.7 72.7 100.0 100.0 62.5 83.9

the advantage of giving our robot the ability to detect several

hundred types of objects “for free,” without much additional

investment in dataset collection. We use the Faster R-CNN

implementation in Caffe [32], a C++ deep learning framework

library.

An example of our detection results with an image taken

by the drone is shown in Fig. 4. Here, the numbers above

the box are the confidence scores of detected object, with

greater score meaning greater confidence. The drone detected

four different types of objects correctly, even though one

object, a computer mouse, has a relatively low confidence.

However, an advantage of robotic applications is that when

such uncertainty is detected, the drone can choose to approach

the computer mouse and take more pictures from different

angles and distances, in order to confirm the detection. For

example, if a detection score decreases while approaching the

object and falls under some threshold, the drone can decide

that the object is not the target.

V. EXPERIMENTAL RESULTS

We conducted three sets of experiments to demonstrate

that our approach performs successfully in a realistic but

controlled environment. In the first set of experiments, we

focus on testing the accuracy of recent deep network based

object detectors with aerial images taken by the drone, and

specifically the viability of our idea of applying object models

trained on consumer images (from ImageNet) to a robot

application. In the second set of experiments, we evaluate the

speed of our cloud based object detection approach, comparing

with running time of the fastest deep learning based object

detector on a local laptop. Finally, we verify our approach

with the scenario of a drone searching for a target object in

an indoor environment, as a simple simulation of a search-

and-rescue or surveillance application.

The first two sets of experiments were conducted on our

aerial image dataset and the last experiment was conducted

in an indoor room of about 3m × 3m. We did not make

any attempt to control for illumination or background clutter,

although the illumination was fixed (overhead fluorescent

lighting) and the background was largely composed of the

navigation markers mentioned above.

A. Object Detection Accuracy

We first compared the ability of Faster R-CNNs with two

recent state-of-the-are object detectors (YOLO [33] and SSD

[34]) to recognize aerial images taken by the drone. YOLO and

SSD are approaches that are designed to speed up classifier-

based object detection systems through eliminating the most

computationally demanding part (generating region proposals

and computing CNN features for each region). Both methods

showed accurate mean average precision (mAP) on Pascal

VOC 2007 dataset (YOLO: 69.0% vs. SSD300: 74.3%) with

real-time performance (faster than 30 FPS) on GPU.
To make a fair comparison, we used models that were all

pre-trained on the same dataset (Pascal VOC 2007 and Pascal

VOC 2012). We collected 294 aerial images of 20 object

classes and annotated 578 objects in the images. The images

had the same object classes as the Pascal VOC 2007 dataset

and were collected from two sources (some of them taken

by ourselves and the others were collected from 31 publicly

available Youtube videos taken by the same drone as ours).

Table I shows average precision of each algorithm on this

dataset. Here, the SSD300 model and SSD500 model have the

same architecture and the only difference is the input image

size (300 × 300 pixels vs. 500 × 500 pixels). YOLO and

Fast YOLO also use similar architectures except Fast YOLO

uses fewer convolutional layers (24 convolutional layers vs. 9

convolutional layers for Fast YOLO).
On this dataset, Faster R-CNN acheived 83.9% mAP com-

pared to YOLO models (78.3% and 79.4%) and two SSD

models (81.6% and 82.6%). All models achieved higher mAP

on our aerial image dataset than their detection results on

Pascal VOC2007 since images of some object classes such

as cats and plants are very distinctive with clean backgrounds.

The first row of Fig. 8 shows these “easy” images on this

dataset, and the second row presents some “hard” examples

which were taken at high altitude.
As discussed above, we applied Faster R-CNN trained on

ImageNet consumer images and fine-tuned with Pascal VOC

dataset to our drone scenario. This time, we did not limit

the objects to those 20 object categories of VOC 2007, but

instead we looked at the results among the 200 categories

Faster R-CNN provided. We did this though the aerial drone

images look nothing like most consumer images, because we

did not have the large-scale dataset needed to train a CNN from

scratch. This can be thought of as a simple case of transfer

learning, and likely suffers from the usual mismatch problem

when training sets and testing sets are sampled from different

distributions. We took other 74 images like bottom two rows

of Fig. 8, and achieved 63.5% of accuracy.

B. Recognition Speed on Cloud System
Our second set of experiments evaluated the running time

performance of the CNN-based object recognition, testing the

extent to which cloud computing could improve recognition

times, and the variability of cloud-based recognition times due

to unpredictable communication times. For these experiments

we used the same set of images and objects collected in
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Fig. 5. A running time comparison of recent state-of-the-art object detectors
on our aerial images.

the previous section, and compared the speed of each algo-

rithm using Graphics Processing Unit (GPU) on a simulated

cloud machine at first. We measured the running time includ-

ing image loading, pre-processing, and output parsing (post-

processing) time, since those times are important in real-time

applications.

Fig. 5 shows the running time of each algorithm as a

function of its accuracy. Even though all recent state-of-the-

art methods showed reasonable speed with high-accuracy, for

instance, SSD 300 models showed 6.55 FPS with mAP 81.6,

the result shows detection speed and accuracy are still in

inverse related. Fast YOLO showed the highest speed (57.4

FPS) with the lowest accuracy (mAP 78.3), while Faster

R-CNN had the lowest speed (3.48 FPS) with the highest

accuracy (mAP 83.9).

In the second experiment, we thus compared Fast YOLO

on a local laptop versus Faster R-CNN on a remote server as

a simulated cloud. A comparison of these computing facilities

are shown in Table II. Fig. 6 shows the running time of Fast

YOLO and Faster R-CNN on the two different machines.

The average running time of Fast YOLO on the local

machine was 7.31 seconds per image, while the average time

on the cloud machine based Faster R-CNN was 1.29 seconds,

including latencies for sending each image to the cloud

computer (which averaged about 600ms), and for exchanging

detected results and other command messages (which averaged

0.41ms). Thus the cloud-based recognition performed about

5.7 times faster than the local Fast YOLO on average. The

average running time on our single-server simulated cloud

is not fast enough to be considered real time, but is still

fast enough to be useful in many applications. Moreover,

recognition could be easily made faster by parallelizing object

model evaluations across different machines.
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Fig. 6. Running time of object detection on each machine.

C. Target Search with a Drone

In this section, we demonstrate our approach with a simple

scenario of the drone searching for a target object in an indoor

environment. We assume that a drone is supposed to find a

single target object in a room in a building. There are several

different types of objects in the room, but fortunately there are

no obstacles.

In the test scenario, we used a screwdriver as a target

object and scattered various distractor objects on the floor in

the indoor test room. The drone started this object searching

mission with lower-resolution downward-facing camera, and

ran the BING algorithm for finding generic objects given the

input video. At the same time, the position estimator node

estimated the drone’s position continuously. When the drone

found any “interesting” objects on the floor, it switched to the

front-facing camera to capture a photo at a higher resolution

and with a wider angle, then took picture of the candidate area

and sends it to the cloud system (t = 3 s and t = 8 s). Then,

the drone switched the camera back to the downward-facing

camera for localization and stability control, and proceeded

to the other candidate positions. In the meantime, the cloud

system performed recognition then sent results to the drone.

The drone performed the same steps until it found a target

object, at which point the mission was completed (t = 17 s).

TABLE II
HARDWARE COMPARISON BETWEEN LOCAL AND CLOUD MACHINE

local computer cloud computer

CPUs
one Intel Core
i7-4700HQ @ 2.4GHz

two Intel Xeon
E5-2680 v3 @ 2.5GHz

GPUs
one Nvidia
GeForce GTX 770M

two Nvidia Tesla K40

RAM 16 GB 128 GB
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t = 0 s t = 3 s t = 8 s t = 13 s t = 17 s

Fig. 7. Target Search with a Drone: First rows show movements of the drone during the experiment, and second and third rows indicate detection results
from BING and R-CNNs respectively. At t = 0 s the drone started to search for a target object and did not find generic objects with BING. At t = 3 s, t =
8 s, the drone found generic objects with BING, thus took high resolution pictures and sent them to cloud server. However, R-CNNs did not detect a target
object in those images. At t = 17 s, the drone found generic objects again, thus it took the high resolution picture and sent it to cloud server. Then, finally
R-CNNs based object detector found a target object.

Fig. 7 shows a sequence of images taken during the drone’s

search for a target object in our test scenario. It shows that

the drone only took pictures and sent them when there were

“interesting” objects on the floor, and finally found the target

object, a screwdriver, with the cloud-based R-CNNs object

detector.

VI. CONCLUSION

In this paper, we proposed to use Convolutional Neural Net-

works to allow UAVs to detect hundreds of object categories.

CNNs are computationally expensive, however, so we explore

the hybrid approach that moving the recognition to a remote

computing cloud while keeping low-level object detection

and short-term navigation onboard. Our approach enables the

UAVs, especially lightweight, low-cost consumer UAVs, to use

state-of-the-art object detection algorithms, despite their very

large computational demands. The (nearly) unlimited cloud-

based computation resources, however, come at the cost of

potentially high and unpredictable communication lag and

highly variable system load. We tested our approach with a

Parrot AR.Drone 2.0 as a low-cost hardware platform in a

real indoor environment. The results suggest that the cloud-

based approach could allow speed-ups of nearly an order of

magnitude, approaching real-time performance even when de-

tecting hundreds of object categories, despite these additional

communication lags. We demonstrated our approach in terms

of recognition accuracy and speed, and in a simple target

searching scenario.

ACKNOWLEDGMENT

The authors wish to thank Matt Francisco for helping to

design and fabricate the forward-facing camera mirror, Supun

Kamburugamuve for helping with the software interface to the

cloud infrastructure, and Bruce Shei for configuring the cloud

servers.

REFERENCES

[1] M. Bhaskaranand and J. D. Gibson, “Low-complexity video encoding
for uav reconnaissance and surveillance,” in Military Communications
Conference (MILCOM). IEEE, 2011, pp. 1633–1638.

[2] P. Doherty and P. Rudol, “A uav search and rescue scenario with human
body detection and geolocalization,” in Australasian Joint Conference
on Artificial Intelligence. Springer, 2007, pp. 1–13.

[3] T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair,
I. L. Grixa, F. Ruess, M. Suppa, and D. Burschka, “Toward a fully
autonomous uav: Research platform for indoor and outdoor urban search
and rescue,” IEEE robotics & automation magazine, vol. 19, no. 3, pp.
46–56, 2012.

[4] L. Merino, F. Caballero, J. R. Martı́nez-de Dios, J. Ferruz, and A. Ollero,
“A cooperative perception system for multiple uavs: Application to
automatic detection of forest fires,” Journal of Field Robotics, vol. 23,
no. 3-4, pp. 165–184, 2006.

[5] I. Sa, S. Hrabar, and P. Corke, “Outdoor flight testing of a pole inspection
uav incorporating high-speed vision,” in Field and Service Robotics.
Springer, 2015, pp. 107–121.

[6] T. P. Breckon, S. E. Barnes, M. L. Eichner, and K. Wahren, “Autonomous
real-time vehicle detection from a medium-level uav,” in Proc. 24th
International Conference on Unmanned Air Vehicle Systems, 2009, pp.
29–1.

[7] J. Gleason, A. V. Nefian, X. Bouyssounousse, T. Fong, and G. Bebis,
“Vehicle detection from aerial imagery,” in Robotics and Automation
(ICRA), 2011 IEEE International Conference on. IEEE, 2011, pp.
2065–2070.

[8] A. Gaszczak, T. P. Breckon, and J. Han, “Real-time people and vehicle
detection from uav imagery,” in IS&T/SPIE Electronic Imaging. Inter-
national Society for Optics and Photonics, 2011, pp. 78 780B–78 780B.

[9] H. Lim and S. N. Sinha, “Monocular localization of a moving person
onboard a quadrotor mav,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2015, pp. 2182–2189.

[10] J. Engel, J. Sturm, and D. Cremers, “Scale-aware navigation of a low-
cost quadrocopter with a monocular camera,” Robotics and Autonomous
Systems, vol. 62, no. 11, pp. 1646–1656, 2014.

[11] C. Forster, M. Faessler, F. Fontana, M. Werlberger, and D. Scaramuzza,
“Continuous on-board monocular-vision-based elevation mapping ap-
plied to autonomous landing of micro aerial vehicles,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2015, pp. 111–118.

42



Fig. 8. Sample images collected by our drone. R-CNNs based object recognition are able to detect a wide variety of different types of objects.

[12] F. S. Leira, T. A. Johansen, and T. I. Fossen, “Automatic detection,
classification and tracking of objects in the ocean surface from uavs
using a thermal camera,” in 2015 IEEE Aerospace Conference. IEEE,
2015, pp. 1–10.

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[14] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 2625–2634.

[15] D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Deep
neural networks segment neuronal membranes in electron microscopy
images,” in Advances in neural information processing systems, 2012,
pp. 2843–2851.

[16] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211–252, 2015.

[17] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
Neural Information Processing Systems (NIPS), 2015.

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[19] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” Journal of Machine Learning Research,
vol. 17, no. 39, pp. 1–40, 2016.

[20] J. Nagi, A. Giusti, F. Nagi, L. M. Gambardella, and G. A. Di Caro,
“Online feature extraction for the incremental learning of gestures in
human-swarm interaction,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2014, pp. 3331–3338.

[21] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” The International Journal of Robotics Research, vol. 34, no.
4-5, pp. 705–724, 2015.

[22] K. Goldberg and B. Kehoe, “Cloud robotics and automation: A survey
of related work,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2013-5, 2013.

[23] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research
on cloud robotics and automation,” IEEE Transactions on Automation
Science and Engineering, vol. 12, no. 2, pp. 398–409, 2015.

[24] D. Hunziker, M. Gajamohan, M. Waibel, and R. D’Andrea, “Rapyuta:
The roboearth cloud engine,” in Robotics and Automation (ICRA), 2013
IEEE International Conference on. IEEE, 2013, pp. 438–444.

[25] B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness of
image windows,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 34, no. 11, pp. 2189–2202, 2012.

[26] X. Wang, M. Yang, S. Zhu, and Y. Lin, “Regionlets for generic object
detection,” in Proceedings of the IEEE International Conference on
Computer Vision, 2013, pp. 17–24.

[27] J. Hosang, R. Benenson, P. Dollár, and B. Schiele, “What makes for
effective detection proposals?” IEEE transactions on pattern analysis
and machine intelligence, vol. 38, no. 4, pp. 814–830, 2016.

[28] M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. Torr, “Bing: Binarized
normed gradients for objectness estimation at 300fps,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2014,
pp. 3286–3293.

[29] P.-J. Bristeau, F. Callou, D. Vissiere, and N. Petit, “The navigation and
control technology inside the ar. drone micro uav,” IFAC Proceedings
Volumes, vol. 44, no. 1, pp. 1477–1484, 2011.

[30] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA workshop on open source software, 2009.

[31] D. Wagner and D. Schmalstieg, “Artoolkitplus for pose tracking on
mobile devices,” in Computer Vision Winter Workshop (CVWW), 2007.

[32] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[33] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[34] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in roceedings of European
Conference on Computer Vision (ECCV), 2016.

43


