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Abstract—Robot learning from demonstration (LfD) is a re-
search paradigm that can play an important role in addressing
the issue of scaling up robot learning. Since this type of approach
enables non-robotics experts can teach robots new knowledge
without any professional background of mechanical engineering
or computer programming skills, robots can appear in the
real world even if it does not have any prior knowledge for
any tasks like a new born baby. There is a growing body
of literature that employ LfD approach for training robots.
In this paper, I present a survey of recent research in this
area while focusing on studies for human-robot collaborative
tasks. Since there are different aspects between stand-alone
tasks and collaborative tasks, researchers should consider these
differences to design collaborative robots for more effective
and natural human-robot collaboration (HRC). In this regard,
many researchers have shown an increased interest in to make
better communication framework between robots and humans
because communication is a key issue to apply LfD paradigm
for human-robot collaboration. I thus review some recent works
that focus on designing better communication channels/methods
at the first, then deal with another interesting research method,
Interactive/Active learning, after that I finally present other
recent approaches tackle a more challenging problem, learning
of complex tasks, in the last of the paper.

I. INTRODUCTION

Robot learning from demonstration (LfD) is a promising
approach that can transfer many robot prototypes remaining
in research laboratories to the real world since it typically
does not require any expert knowledge of robotics technology
for teaching robots new tasks. It thus allows end-users to teach
robots what robots should do based on their own requirements
at their place. Existing research recognizes this attractive
feature of LfD, so there is a growing body of literature that
employs the theme of LfD for their research [1]–[3].

LfD also has been attracting a lot of interest from re-
searchers in the field of Human-Robot Interaction (HRI)
because it helps robots to learn new tasks that are infeasible to
be learned using pre-programming like personal requirements
as their human counterparts. Furthermore, the HRI perspective
can help to build a robot learning process more efficiently
(e.g., a human user can correct the robot’s behaviors during
interaction and highlight important points of the new tasks).

In order to employ the concept of LfD for human-robot
collaborative tasks, however, researchers should not only
consider robot learning algorithms or techniques, but also
take into account many human-centric issues such as the
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Fig. 1. Robot learning from demonstration (LfD) enables robots automat-
ically learn a new task from observations. End-users can teach robots a
new task what robots should do without any expert knowledge of robotics
technology.

human partner’s feelings and intentions during collaboration
phases. Moreover, here are a number of important differences
between the approaches that are used by HRI researchers
and other robotics researchers who have different perspectives
even though both fields work under the same LfD paradigm.
One major difference is that HRI researchers tend to be
more focused on communications between humans and robots,
and thus try to extract intentions behind actions and make
communications clear while other robotics engineers are more
concerned about specific techniques like how to replicate arm
trajectories from human demonstrations for accomplishing a
certain type of task.

LfD is a broad topic ranging from various machine learning
techniques like supervised learning, reinforcement learning,
and feature selection, to human factors as well. Researchers
with different backgrounds thus employ the concept from
different points of view [1]–[3]. There are common theoretical
issues in the field such as the Correspondence Problem that
arise due to a mismatch between the teacher’s body configura-
tion and the student’s configuration [4] and interface issue to
design user friendly interfaces for demonstration (i.e., motion-
capture systems [5]) in order to enable non-robotics experts to
teach robots new knowledge without any difficulty. However,
I more focus on the specifics of this area which apply this
concept for human-robot collaborative tasks that have some
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different issues coming from human factors rather than to
address those common issues in the field.

I begin my review by presenting an overview of LfD
approaches for human-robot collaborative tasks. I will then go
on to review research that address communication problems
between robots and humans in Section 2-A. The approaches
that employ Interactive/Active Learning methods, what make
a teaching/learning process more interactive, will be addressed
in the following section (Section 2-B). In the next section, I
will introduce some recent work that attempts to teach robots
a complex task rather than a single task (Section 2-C). To
conclude, I summarize this article in Section 3 with discussion.

II. LFD FOR HUMAN-ROBOT COLLABORATIVE TASKS

In order to build robots that would work together side by
side with humans while sharing workplaces, many human
factors should be addressed properly. For example, researchers
should handle a safety issue to prevent potential hazards by
robots [6] and they also need to consider a human partner’s
mental states (i.e., feelings, desires, intents, etc.) to make
them feel more comfortable with robot co-workers [7], [8].
Moreover, since people perceive and react to robots differently
according to their relationship with robots and the appearances
of them [9], it is important to consider these factors if we
want people treat robots as their ”work partner” or ”friend.”
The LfD paradigm cannot be used to teach robots human-
robot collaborative tasks without considering the above human
factors, despite many attractive points of LfD.

There has been a considerable number of previous efforts
to use a LfD paradigm for human-robot collaborative tasks
while considering those human-centric issues using different
techniques [10]–[13]. Even though each work handles the
human factors in different ways, very roughly, we can consider
the problems tackled by all of these approaches as a kind of
uncertainty minimization problem since most of the problems
stem from unpredictable behaviors of humans/robots. There-
fore, reducing the uncertainty in communications can be the
key concept of these research areas in the success of the
learning process.

For example, many HRI researchers focus more on de-
signing a way to help a human user easily understand their
robot partner, rather than to develop techniques to just transfer
knowledge from a human to a robot for replicating certain
motions [7], since it helps increase human’s predictability.
We as humans tend to feel uncomfortable when we are in
unpredictable situations or when we are not able to understand
someone’s intention or meaning, but we would be comfortable
as we become more familiar with the situations or each other
by understanding them. As our partner, robots are also required
to understand a human partner’s mental states for working
together, hence many researchers attempt to automatically
detect social cues of people using various techniques [14],
[15]. We can see details about these research methods in
Section 2-A.

Another important perspective to employ the LfD paradigm
for human-robot collaborative tasks is to make the learning

process a bidirectional activity rather than passive learning
where robots learn new tasks from passively observing human
demonstrations [12]. This line of research is called Inter-
active/Active Learning and considers a robot as an active
partner that provides feedback to the human teacher during
the collaboration phase, and then the feedback can be used for
reducing uncertainty in terms of accomplishing to learn new
tasks so that that learning process is able to become more
efficient [16]. I will give detailed reviews about the active
learning methods in Section 2-B.

Learning of complex tasks is another challenge that re-
searchers have recently treated in the field [17]. This is one
of the ultimate goals of all LfD based approaches since we
want to robots to automatically learn some high-level skills
like ”pick-up” without teaching them all the arm trajectories
to accomplish the task. Although learning of high-level actions
is the ultimate goal of the field, there have been few studies
that have investigated it for human-robot collaborative tasks
[18]. I will present these recent studies in Section 2-C.

A. Communication

Communication is the most important key for creating a col-
laborative robot that can work around us (humans). Commu-
nication is a bidirectional activity that exchanges mental states
(i.e., thoughts, feelings, and intentions) in both directions, but
researchers in the field tend to focus on one direction for
developing their robotic systems. However, both are equally
important for human-robot collaboration, I thus introduce
recent papers that try to make clear communication in both
directions (“Humans to Robots” and “Robots to Humans”) in
this section.

a) User Intention Recognition: Much of the previous
research on LfD for human-robot collaborative tasks has
been carried out to recognize “Social Cues” such as body
posture, facial expressions, direction of gaze, and verbal cues
in interactions, since they can give hints to a robot about the
goal of the current task for learning. The robots then are able
to use these hints to reduce the search spaces to learn the new
task for speeding up or to correct their movements [1]. Various
techniques are used to recognize human user’s intentions like
eye-gaze detection [14], speech recognition [15], and motion
capture [19], but the most intuitive way to let a robot know
about our (humans) thoughts or feelings is probably to use our
own (natural) language.

Stefanie Tellex et al. presented a new system for understat-
ing human natural language to automatically generate robot
control plans corresponding to the natural language commands
[20]. They introduced a new probabilistic graphical model
called Generalized Grounding Graphs in order to transfer a
part of natural language control commands to corresponding
groundings like target objects, places, and paths. The proposed
approach is based on Conditional Random Fields (CRFs)
which is one of popular approaches in natural language
processing. They trained the suggested system on a new
dataset that they collected from 45 subjects for 22 different



videos using Amazons Mechanical Turk (AMT). This was
the annotated dataset of natural language commands that
corresponds to correct robot actions. Finally, they were able to
interpret high-level natural language control commands such
as “Put the tire pallet on the truck” after training their system,
and then it generated control plans for the robot.

Recently, Dipendra Misra el al. also introduced a new
approach to interpret a user’s natural language instructions
to generate robotic actions for manipulation tasks [15]. Their
approach considered ambiguity of natural language based
instructions since the same instructions can be interpreted
differently according to the current situation of a robot like
its location and the state of the target objects. For example, an
instruction such as “fill the cup with water” can be interpreted
by the robot either taking a cup and filling it with water from
the tap, or approaching a refrigerator to take a water bottle
out from the fridge at first, and then pouring water into the
cup with the water bottle according to the environment of the
robot.

They handled this ambiguity of robotic instructions and the
large variations given by human natural language using a CRF
based method with a new energy function that encodes those
properties into environment variables for manipulation tasks.
Here, the energy function is composed of several nodes and
factors that represent natural language (which is converted into
a set of verb clauses), environment and controller instruction.
To train this model, they first created a new dataset, Verb-
Environment-Instruction Library (VEIL)-300, which has six
different tasks while considering service robot scenarios like
“Making coffee” or “Serving affogato.” The dataset contains
natural language commands, environment information, and
ground-truth instruction sequences that correspond to the com-
mands. They trained their model on this dataset for mapping
the natural language commands to robot controller instruc-
tions, and then they showed accuracy of their model, 61.8%,
which outperformed all of their baselines on the validation set.

Motion capture is another system that is widely used for
making demonstration datasets for teaching robots in the field.
Jonas Koenemann et al. presented a real-time motion capture
system that enables a robot to imitate human whole-body
motions [21]. In this approach, human motions were captured
using inertial sensors attached to the human body segments
with an Xsens MVN motion capture system. In order to reduce
the computational cost, they simplified a human model, so
they only considered the positions of the end-effectors (i.e.,
the position of the hands and feet) and the position of center
of mass instead of considering a high number of parameters
to represent all joint positions of the body. Then, they applied
inverse kinematics to find joint angles given the positions of
end-effectors, then generated robot motions while considering
finding stable robot configurations instead of just focusing on
imitating the human motions directly. They demonstrated their
approach with a Nao humanoid robot, and then showed the
robot was able to imitate human whole-body motions with
consideration for stabilization in real-time.

However, we, as humans, also can catch other people’s

thoughts or emotional states from many other signs like facial
expressions, voices or even small body movements even when
we do not understand other people’s speaking or we are not
able to see whole-body motions of other people so these
kinds of signs are also very important and meaningful in
communication and widely used by HRI researchers.

Bilge Mutlu showed how embodied cues like facial expres-
sions, gaze, head gestures, arm gesture, social touch, social
smile, etc. play important roles in communication through
his investigation [22]. He explored research on human com-
munication, and then found that the research provides strong
evidence about the hypothesis that embodied cues help achieve
positive social and task outcomes in various domains of social
interaction such as “Learning and Development” or “Motiva-
tion, Compliance, and Persuasion” in human-human communi-
cation. Thus, he finally suggested that HRI researchers should
study the most effective ways to use such embodied cues
for designing social robots while considering the relationship
between particular embodied cues and outcomes in order to
get similar positive outcomes in human-robot interaction.

His recent work with Sauppe can be a good example
which shows the importance of embodied cues for designing
human collaborative robots [9]. In this paper, they studied
how robots are treated by human co-workers in an industrial
setting, while focusing on aspects of the robot’s design and
context. The authors found that workers perceive the robots
very differently according to various aspects like the physical
appearance of the robots or their positions (roles) at their
places of work. For example, workers who were supposed to
operate the robot treated the robot as their “work partner”
or “friend,” while maintenance and management staff just
considered the robot the same as other industrial equipment.
Another interesting finding here is that human workers felt that
the robots had some intelligence because of the robot’s eye
movements since it seemed the robots knew what they were
doing. Actually, they were pre-programmed movements so that
the robots just moved their eyes to follow the trajectory of their
arms, however, even though those movements were simple,
the movements helped the human workers to understand the
status of the robots and their next actions. Thus, it made
human workers feel safe when they were working in close
proximity to the robots, since they believed the robots were
able to convey their intentions through the eyes.

Gesture recognition is also widely used for human-robot
collaboration since gestures can be one of the effective com-
munication channels between humans and robots for working
together [23]. Various sensors (i.e., a depth camera and a wired
glove) and algorithms (i.e., Hidden Markov Models (HMMs)-
based algorithms for modeling meaningful gestures and skele-
tal based algorithms for feature extraction and detection) are
used for this line of research.

Jim Mainprice and Dmitry Berenson presented a new frame-
work to recognize humans intentions as early as possible [24].
In this paper, the authors focused on building a framework for
early detection of human motion in order to generate safe
robot motions when humans and robots are working together



in close proximity. They modeled a human’s motion as a Gaus-
sians Mixture Model (GMM) representation and performed
Gaussian Mixture Regression (GMR) to predict the human’s
future motions. Finally, the proposed approach generated robot
motions while considering a prediction of human workspace
occupancy which is obtained by the swept volume of predicted
human motion trajectories. They demonstrated their approach
in a PR2 robot simulation after training the framework on the
collected human motion demonstrations of manipulation tasks
on a table. It showed that the proposed approach was able to
take into account the human motion predictions in the robot’s
motion planner, so the robot could interact with the human
co-worker more safely and efficiently in close proximity.

Another a interesting keyword that can be used for un-
derstanding user’s intention is “Affordance.” Hema S. Kop-
pula and Ashutosh Saxena presented a new CRF-based ap-
proach, called an anticipatory temporal conditional random
field (ATCRF), to predict future human activities based on
object affordances [25]. Given the current observation of
a human user’s pose and the surrounding environment of
her/him, the goal of the proposed approach is to anticipate
what the user will do next. In order to achieve the goal, they
first segmented an observed activity in time, then constructed
a spatio-temporal graph based on the segmented sub-activities.
The graph consists of four types of nodes (human pose,
object affordance, object location, and sub-activity), then they
augmented the constructed graph with anticipated nodes repre-
senting potential temporal segments. The authors demonstrated
the proposed approach on the CAD-120 human activity dataset
[26] and obtained 2.7% improvement on the state-of-the-art
detection results in terms of a success rate. They also reported
that this approach achieved 75.4%, 69.2% and 58.1% accuracy
to anticipate an activity for times of 1, 3 and 10 seconds before,
respectively.

Daqing Yi and Michael A. Goodric presented a new frame-
work for sharing information between robots and humans for
task-oriented collaboration [27]. In this work, they considered
a cordon and search mission, which is one kind of military
tactic for searching out the enemy in an area, as a human-robot
collaborative task that has to be solved by a human-robot team.
Here, the authors assumed that a team supervisor (normally
a human) assigns sub-tasks to his/her robot team members
after decomposing the task, then the robot team members are
supposed to accomplish these given sub-tasks (i.e., searching
a high risk sub-region for their human team members). They
suggested the concept of a shared mental model for sharing
knowledge about the current situation among all team mem-
bers (robots and humans), so their framework was presented to
help all human and robot team members understand each other
correctly according to their task. Understanding all commands
from natural language is not easy, but the problem becomes
easier in general if all team members know about the goal,
so in this paper, the authors suggested to use a task-specific
(oriented) grammar for converting a human supervisor’s verbal
command into a sequence of way points, thus robot team
members could understand their given tasks more correctly.

b) Readable Robot Intentions: Another direction of LfD
research in human-robot collaboration that focuses on com-
munication between robots and humans is designing robot
behaviors and functions more carefully in order to show more
readable robot intentions.

Breazeal et al. showed that a robot’s non-verbal cues are
important for building teamwork between humans and robots
[28]. In this paper, they recruited a total of 21 subjects
then conducted a user study with them about task-oriented
interactions between the subjects and the robot Leonardo. Each
subject first was asked to teach Leonardo the names of three
different colored buttons (red, green and blue) which were
located in front of the robot in its workspace, and then checked
to see that the robot knew the names and locations of the but-
tons. After that the subject was asked to guide the robot to turn
on all of the buttons. Experimenters recorded videos while the
experiment was performed, and then gave a questionnaire to
the subject after the experiment. After performing behavioral
analysis of the videos, they found that the robot’s non-verbal
social cues (e.g., changes of gaze direction and eye blinks)
helped humans read mental states of the robot and improved
human-robot task performance. The self-report results from the
subjects also suggested that subjects perceived that the robot
was more understandable when the robot showed non-verbal
behaviors as well as explicitly using expressive social cues.

Leila Takayama et al. applied animation principles to create
readable robots behaviors [29]. In this paper, the authors cre-
ated a robot animation which shows different robot behaviors
according to their hypotheses (H1: showing forethought before
performing an action would improve a robot’s readability, H2:
showing a goal-oriented reaction to a task outcome would pos-
itively influence people’s subjective perceptions of the robot)
and then measured how people described the robot’s intentions
(before the action is performed) and how people perceived the
robot in terms of some adjectives such as appealing and intelli-
gent after conducting a video prototyping study with a total of
273 subjects. They found that people perceived the robot to be
more appealing and their behaviors were more readable when
the robot showed forethought before taking actions. They also
discovered that showing a reaction made people feel that the
robot was more intelligent. Even though this research is not
LfD based, it shows potential benefits since the animation
principles have been verified and successfully used to make a
character by connecting its actions in animations. Furthermore,
HRI researchers can design robot behaviors and test them
using animation instead of building/programming is physical
robot to test new designing of robot motions.

Here, it is worth noting that the readable robot behaviors are
not always exactly the same as either the optimal behaviors of
the robot to achieve its goal or expected robot behaviors that
we can predict when we observe the robot operations.

Anca D. Dragan et al. focused on the difference between two
types of robot motions (predictable robot motion and legible
motion) [11]. They argued that both robot motions are fun-
damentally different and often show contradictory properties.



Here, the predictable robot motions mean those that match
with expected behaviors of observers (humans). On the other
hand, the legible robot motions mean those that convey their
intentions of behaviors clearly. In this research, the authors
formalized legibility and predictability in the context of goal-
directed robot motions, then modeled both robot motions
based on a cost optimization function which is designed in
consideration of the principle of rational action. Finally, they
demonstrated that two types of motions were contradictory
through their experiments with three characters (a simulated
point robot, the bi-manual robot mobile manipulator (HERB),
and a human). They found that this difference between two
properties derived from inferences in opposing directions,
“action-to-goal” and “goal-to-action,” which refer to an ob-
server’s ability to answer the questions: “what is the function
of this action?” when she/he observes ongoing robot actions
and “what action would achieve this goal?” when the observer
knows the robot’s goal, respectively. Their findings through the
experiments supported the theory in Psychology that humans
interpret observed behaviors as goal-directed actions.

The same authors studied the effect of “familiarization” on
the predictability of robot motion in their follow-up work [30].
This research originated from the idea of having users learn
from robot demonstrations in order to increase their ability to
predict robot motions (familiarization) because predictability
is one of the keys for building collaborative robots that can
work side by side with humans. This research direction is
opposite making robot motions more predictable, and it gave
us valuable insights about building more natural human-robot
collaboration frameworks. They used the same methods that
were used in their previous work [30] to generate predictable
robot motions, and then conducted a new user study to see the
effect of familiarization on the robot motions. They recruited a
total of 50 participants via AMT and conducted familiarization
tests on two different types of robot motion (natural motion
vs. unnatural motion), where the natural motion was defined as
motion that is predictable without (or prior to) familiarization.
In the experiment, each participant was asked to answer
the questions about their predictability of the robot motion
before and after exposing the examples of robot demonstration
videos. They found that the robot motions became more
predictable after familiarization even though the familiariza-
tion was not enough for users to identify the robot motions,
especially when the robot operated in high-dimensional space
with certain complex movements. The authors also reported
that familiarization could help humans to be more comfortable
to robots and less natural robot motions hindered our ability
to predict the motions.

Leah Perlmutter et al. tried to make robots provide their
internal states to human users for helping them to understand
the robot’s thought and intentions, since we as humans are
not able to judge what robots can see, hear, or infer in
the same way that we use in human-human communication
[31]. In this paper, the authors proposed visualization-based
transparency mechanisms rather than developing a human-like
verbal (or non-verbal) communication system for robots. The

proposed visualization module is one kind of the add-on tools
which could be added on a robotic perception system that
consists of three perception components (scene perception,
pointing detection, and speech processing) to interpret the
robot user’s commands. They conducted a user study with
20 participants with the proposed robotic system, and then
investigated the effect of their visualization-based transparency
mechanisms. Their findings indicate that visualizations can
help users communicate with the robot and understand robot’s
abilities even though some participants reported that they
still prefer to have human-like transparency mechanisms with
robots.

B. Interactive/Active Learning

In recent years, the research of interactive/active learning
has received considerable critical attention in the field.

Maya Cakmak and Andrea L. Thomaz introduced this new
robot learning method, which is called Active Learning, to
allow a robot to ask questions to its teacher (a human user)
when the robot is unsure what to do next during learning [12].
In this article, they identified three types of queries (label,
demonstration and feature queries) for an Active Learning
based method in LfD and conducted two sets of experiments
with human subjects. The first set of experiments was designed
to investigate how humans ask questions in human-human
collaboration scenarios with some levels of abstraction of the
tasks in consideration of employing the same scenarios for
human-robot collaboration. The second set of experiments was
designed to evaluate the use of the three types of queries
in human-human collaboration scenarios. The authors found
that participants perceived the robot as the smartest when it
asked questions using feature queries, which is to directly
ask about specific features like positions and rotations to
manipulate target objects for learning a new task (e.g., “Should
I keep this orientation at the start?”). They also reported that
this type of query was the most commonly used in human
learning (82%) even though this is the most challenging
type of query for robots to produce automatically since it
requires some level of situation understanding for asking good
questions. These findings provide guidelines to design good
questions for building robots as an active learner in human-
robot collaboration scenarios.

Stefanie Tellex et al. presented an approach for a robot to
take advantage of receiving help from its human partner when
the robot and the human partner work together for accomplish-
ing a certain task [32]. They used a natural language generation
system, which is called inverse semantics, for making a robot
that can request help to the human partner in the form of
natural language when the robot fails to do some task, so
that the robot could recover from the failure based on their
help. Since it is impossible to make a perfect robot that never
fails, they focused on developing this recovery method based
on a natural language generation system for mapping from a
desired human helping behavior that the robot would like the
human to execute to words in natural language commands.
This system was then used for generating requests when the



robot needs assistance. When the robot detects failures using a
motion capture system (VICON), their system first represents
the failure in a simple symbolic language which indicates
the desired human action, and then translates this symbolic
representation to a natural language sentence using a context
free grammar (CFG) to ask a human for assistance. In this
research, the authors demonstrated their approach on a human-
robot collaborative task of assembling a table together, and
then conducted a user study to evaluate the effectiveness of the
proposed approach. The experimental results showed that the
proposed approach helped the participants infer the requested
action from the robot better than their baselines approaches
such as always using a general request (e.g., “Help me”) and
generating requests using template based methods (e.g., “Hand
me part 2”).

W. Bradley Knox et al. presented a case study of teaching
a physically embodied robot by human feedback based on
their framework, which is called TAMER (Training an Agent
Manually via Evaluative Reinforcement), that they previously
proposed for robot learning from human reward [16]. In this
paper, the authors focused on teaching interactive navigation
behaviors to their Mobile-Dexterous-Social (MDS) robot Nexi
using human feedback as the only training resource. There
were two buttons for providing positive or negative reward to
the robot learner according to its state-action pair, and robot
then was able to be trained given the human reward. The
authors taught a total of five navigation behaviors such as “Go
to,” “Keep conversational distance,” and “Look away” to the
robot, then they tested the learned robot behaviors. However,
they found that Nexi did not move properly after training due
to issues of transparency. These transparency issues arose
due to mismatches between the current state-action pair of
the robot learner and what the human-trainer was observing.
The authors pointed out that there were two main reasons
for making this confusion: 1) There can be a delay in the
robot taking an action, so that the mismatch between human
observations and internal states of the robot can happen at this
point, 2) The perception system of the robot is not perfect,
thus the robot is not able to see some objects around it even
if the human trainer can see them. The authors suggested that
researchers should address these transparency challenges when
they employ a human feedback based robot learning method
for teaching a physically embodied robot.

Karol Hausman et al. presented an approach based on the
interactive perception paradigm which uses robot’s actuators
for actively getting more information about the environment
(world) when the robot is unsure for making a decision at the
moment [33]. They proposed a particle filter-based approach
to combine visual robotic perception with the outcomes of the
robot’s manipulation actions in a probabilistic way, and the
robot then found the best action to reduce uncertainty over
articulated motion models given all sensory inputs at the mo-
ment. Here, the articulated motion models indicate the possible
movements of objects such as certain directions (or rotations)
of the objects that can be used for manipulating them. For
example, a door of drawers or cabinets has parts that can be

moved (also cannot be moved) for opening/closing it and it
can provide useful information to a robot for manipulating
the door since the information can be used for reducing the
manipulation space. In this work, they considered four types
of articulated motion models: rigid, prismatic, rotational and
free-body, and then parametrized them with different numbers
of variables according to the types. They demonstrated the
proposed approach using a PR2 mobile manipulator, and
then their experimental results supported that the robot was
able to effectively reduce uncertainty over models in four
manipulation scenarios (opening and closing of a rotational
cabinet door, moving a whiteboard eraser in a straight line,
opening a locked drawer, and grasping a stapler on a table),
and the robot then selected the best action based on a KL-
divergence based information gain approach.

Stefanos Nikolaidis and Julie Shah introduced an inter-
active training method, which is called Cross-training, for
improving human-robot teamwork [34]. A human and a robot
are supposed to switch their roles during the training phase
for learning a new collaborative task by cross-training. This
training approach can be considered as a mutual adaptation
process. They reported that a human-robot team performance
was significantly improved by cross-training for accomplish
a collaborative task, a simple place-and-drill task, in their
experimental results with human subjects. The authors also
showed that participants who iteratively switched their posi-
tions with their robot partner, Abbie, perceived the robot much
more positively than their comparison group who trained with
the robot using standard reinforcement learning methods in
the post experimental survey. Their findings suggest that we
are able to get better team performance with a robot partner
for accomplishing certain tasks together when we switch our
role with the robot during training phase in a way similar to
human-human team training practices.

C. Learning of Complex Tasks

Learning complex tasks is one of the most challenging
aspects of employing the LfD paradigm in the field. Therefore,
to date, there are few studies that have investigated LfD based
learning for teaching complex human-robot collaborative tasks
to a robot [3]. Most of them used a decomposing method to
make a single complex task into multiple relatively easy sub-
tasks for training a robot.

Scott Niekum et al. presented a Hidden Markov model
(HMM) based method, which is called Beta Process Auto
Regressive HMM (BP-AR-HMM), to segment unstructured
demonstrations into multiple sub-skills that enable a robot to
learn complex demonstrations in a single integrated framework
[35]. Here, the authors pointed out four key requirements for
robot learning of complex tasks: 1) the robot must have an
ability to recognize repeated instances of skills and generalize
them; 2) the robot should be able to do segmentation without
prior knowledge; 3) a broad/general class of skills should also
be identified by the robot; and 4) the robot should be able to
represent the skills properly for learning new policies. In this
paper, they addressed all of the above requirements using BP-



AR-HMM and Dynamic Movement Primitives (DMPs) which
is a framework for representing dynamical systems. They then
demonstrated that the proposed approach helped the robot
learn a multi-step task from unstructured demonstrations.

Nadia Figueroa et al. also employed BP-HMM based ap-
proach for teaching a complex sequential task, pizza dough
rolling, to a robot from human demonstrations [17]. In this
paper, they first extracted a set of unique action primitives
(reach, roll and reach back) and their transition probabilities
using an extended version of BP-HMM, and then trained the
model on human demonstrations to learn low-level robot con-
trol parameters for generating proper robot control commands
corresponding to each action primitive. The authors evaluated
the proposed framework on the pizza dough rolling task with
a real robot and showed that the robot made the pizza dough
with consistent shapes and a desired size while their baseline
approach showed unstable performance in three different types
of dough (very soft, a bit stiffer, and a hard dough) since it
used a fixed hand-tuned parameters.

Even though the target scenarios of robot learning in the
above mentioned two approaches are not human-robot collabo-
rative tasks, both approaches show the challenges for teaching
a robot more complex tasks using LfD based approach and
the automatic segmentation methods for handling these issues.
However, in order to apply this line of research for human-
robot collaborative tasks, a robotic learning system should
be able to extract different action primitives which are more
related to “interaction” rather than action itself.

Marco Ewerton et al. presented a Mixture of Interaction
Primitives for learning multiple interaction patterns between
two agents (i.e., a human and a robot) from unlabeled demon-
strations [13]. Here, Interaction Primitive (IP) is a framework
based on DMPs that was proposed by Heni Ben Amor (who
is one of co-authors of this paper) for robot interactive skill
learning and this work is follow-up research that overcame
limits of the previous approach (IP) for learning more complex
tasks and handling various interaction patterns. The main
contribution of this work is modeling multiple interaction
patterns using Gaussian Mixture Model (GMMs) of Interaction
Primitives, so that it enabled modeling nonlinear correlations
between the movements of two different agents (a human
and a robot). In this work, the movements (trajectories) were
represented in the form of the weight vectors, one for each
demonstration about a human-robot collaborative task, and
they stacked the several vectors for making a probability
distribution. After that they trained their model to learn inter-
action patterns based on the weight vectors that parameterized
the trajectories in the demonstrations. They collected a total
of 28 pairs of human-robot demonstrations for training the
proposed framework, and then trained the robot for selecting
the appropriate robot reaction given the observation of the
human partner during collaboration. Their experimental results
supported that the robot was able to learn and recognize mul-
tiple human-robot collaborative tasks based on the proposed
approach.

III. CONCLUSION

In this paper, I presented a survey of robot learning from
demonstration (LfD) approaches for Human-Robot Collabora-
tion. LfD is a very attractive research direction for building
a collaborative robot since it enables robots to automati-
cally learn a new task from non-robotics experts (end-users).
However, it is also challenging because there are common
theoretical issues like the Correspondence Problem, and the
situation becomes more challenging when a robot learns
complex tasks. Moreover, researchers should also consider
many human-centric issues such as safety, human partner’s
feelings, and intention for teaching a robot for collaboration
with humans. Since the human-robot collaborative task is not
a manufacturing task that a robot can perform alone (i.e.,
painting and assembly), but requires a robot to work side by
side as a partner for accomplishing the task, researchers thus
must consider the human-centric issues.

The most important key word here is communication be-
cause a way to communicate between two agents (a robot and
a human) can be very different from a way of communication
between people, even though there are a lot of efforts to make
this human-robot communication similar to human-human
communication. Communication is a bidirectional activity,
however a lot of robotics researchers tend to view this activity
from one direction. In this survey paper, I thus categorized the
LfD based research that focuses on a communication problem
into two lines of works according to their research directions
and described many interesting findings in the both directions.

Several attempts have been made to use non-verbal cues
such as facial expressions, gaze directions, and body gestures
in human-robot communication since these signals can give
out additional useful information for natural and effective com-
munication between a human and a robot. In addition, some
research has been carried out for designing human readable
robot behaviors (predictable and legible robot motions) for
conveying a robot’s intentions during collaborations.

Another interesting line of research in the field is the works
which employ an interactive/active based method for robot
learning. These studies suggest seeing a robot as an active
learner that can ask questions when the robot is unsure what
is going on and what to do next. Furthermore, the robot
can actively move itself for gathering more information for
accomplishing/learning a new task in those kinds of situations.

One of the most difficult remaining challenges in the field
is teaching complex collaborative tasks to a robot. Given a
demonstration of complex tasks (i.e., assembling a table) that
include a number of sub-tasks (i.e., picking-up a part, holding
a part, and turning a screw), we want the robot to automati-
cally find the sub-tasks, then generalize and learn them from
the demonstrations. Since each teacher (a human partner in
common) can have different ways of teaching a robot learner
which involve large variations in movements, teaching a robot
human-robot collaborative tasks becomes more challenging.
Hidden Markov Model (HMM) based approaches are widely
used to model dynamics in interaction for learning and they



show some possibilities, but learning complex collaborative
tasks still remains open due to the difficulty of the problem,
so researchers, as yet, only consider teaching a relative simple
task for robot learning.

Recently, deep learning based approaches have been widely
used in many applications including object detection, scene
segmentation, and learning robot motor control policy for
grasping objects [36]. However, only a few previous studies
have investigated applying deep learning based techniques for
teaching robots human-collaborative tasks from demonstra-
tions. In my view, the main reason is that it is hard to build
a large-scale dataset, which is required for training a robotic
system to apply deep learning based methods. Different robots
have different abilities with different body configurations and
different people want to teach the robots different tasks, so all
of them make the problem harder.

As we see in the paper, most of research in the field
still focuses on making better robotic perception components
to understand human’s intentions in communication. In my
opinion, we apply deep learning techniques to this line of
work without difficulty then improve an ability of robots
to understand human’s intentions. However, making people
understand robots is a relatively hard problem because each
robot has its own unique robotic system. We can teach
robots to mimic a human’s motion, facial/body expressions
for conveying robot’s intentions in the same way as humans
using human-human demonstrations in various collaborative
scenarios, but I think that there can be better alternative
ways for robots to express their intentions and feelings as
robots. Moreover, even if human-human interactions can give
us valuable insights for building robots that can be used in
the same interaction scenarios, simply imitating what humans
do may not guarantee the best solution for robot learning
of human-robot collaborative tasks. Since each robot has
its unique appearance and functions that are usually quite
different from humans, researchers need to consider how to
transfer the learned knowledge from human demonstrations
to each unique intelligent agent. Consequently, the learned
knowledge should be adapted to the robot’s unique form.

Many possibilities would be open if we consider robots
as our active partners like interactive/active learning based
research, and then we can take advantage of capabilities of
robots themselves for teaching them. However, one drawback
of this line of work is it normally considers that human
teachers exist in the same place for teaching robots (online
learning), but that may not be easy since teaching robots a
new task can be a boring and time consuming job.

In this regard, it is time to think about a new learning
framework while considering all of the above mentioned
challenges and possibilities. As interdisciplinary research, de-
signing robots to collaborate with humans requires a lot of
backgrounds, and researchers thus need to collaborate and
work more closely with other researchers in different fields
to provide the new framework for human-robot collaboration.
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